Sunday, February 9, 2020

Telangana-Tenth class Mathematics paper-2 march 2019 Question paper

                                          Section-1

1). Evaluate cosec 39deg . sec 51deg - tan 51deg . cot 39deg

sol) cosec ( 90 - 51) . sec 51 - tan 51 . cot(90-51)

**********************************************
We know cosec(90- 0) = sec 0  and cot(90 - 0) = tan 0
**********************************************


=> sec 51 . sec 51 - tan 51 . tan 51

=> sec^2(51) - tan^2(51)


***************************
we know sec^2 0   -  tan^2 0 = 1
***************************

=> 1


**************************************************************************

2) Write the similarity criterion by which the given pair of triangles are similar.



sol) Finding the ratio of sides

AB = 1
QR    4      2

AC = 3  =  1
QP     6      2

BC = 2.5 = 1
RP      5      2

Hence, AB = AC = BC = 1
             QR   QP     RP     2

SSS Similarity Theorem:- if all 3 pairs of corresponding sides of two triangles are proportional, then the two triangles are similar.

.^. Using similarly SSS criterion

So, △ABC  ~ △QRP

*************************************************

3). From English alphabet if a letter is chosen at random, the find the probability that the letter is consonant.

sol) Total English alphabets = 26

        Number of consonants = 21

.^. the probability that the letter is consonant(P) = 21
                                                                                      26

*****************************************************

4). In a right triangle ABC, right angled at "C" in which AB= 13 cm, BC = 5 cm, determine the value of cos^2 B + Sin^2  A

sol) Using Pythagoras theorem


AB^2 = AC^2 + BC^2

(13)^2 = AC^2 + (5)^2

169 = AC^2 + 25

169-25 = AC^2

144 = AC^2

√144 = AC      {12*12 = 144}

.^. AC = 12 cm




Now,

cos^2 B + Sin^2 A

we know cos 0 = adj
                            hyp


cos^2 B =  Adj  = BC = (5/13)^2
                   Hyp    AB

               

sin^2 A = Opp = AC = (12/13)^2
                  Hyp    AB


cos^2 B + Sin^2 A ;-

(5/13)^2  +  (12/13)^2

(25/169)  +  (144/169)

25 + 144
    169

=>169
     169

cos^2 B + Sin^2 A = 1

*************************************************

(5) A point "P" is 25 cm from the center "O" of the circle. The length of the tangent drawn from "P" to the circle is 24 cm. Find the radius of the circle.

sol




Using Pythagoras Theorem:-

OP^2 = OQ^2 + QP^2

=> (25)^2 = (x)^2 + (24)^2

=> 625 - 576 = x^2

=> 49 = x^2

=> x= √49   {7 * 7 = 49}

=> x or radius(r) = 7

*****************************************************

6) Find the Median of first seven composite numbers

sol) Composite Numbers:- A whole number that can be made by multiplying other whole number. 

excluding prime numbers which can only be formed by multiplying with"1"

example:- 2*2 = 4,    2*3=6  but not "7" as its prime

First seven composite Numbers :-

2*2 = 4

2*3=6

2*4=8

3*3 =9

2*5 = 10

2*6 = 12

2*7 =14

4, 6, 8, 9, 10, 12, 14

.^. the median of 1st seven composite number is "9"

***************************************************

7) In a hemispherical  bowl of 2.1 cm radius ice cream is there. Find the volume of the bowl.

sol) Given :- Radius of bowl = 2.1  cm

We have,

Volume of hemisphere = (2/3) *𝛱 * (r)^3

=> * 22  * (2.1)^3
     3       7

=> (0.6) * (3.14 ) *  9.26

=>  (1.88) * ( 9.26)

Hence, the volume of the spherical bowel =17. 40 cm^3

************************************************

Section-2

8) Write the mode formula for grouped data and explain the terms in it.

sol )





Modal class = Interval with highest frequency

L = Lower limit of modal class

h= class-interval

F1 = Frequency of modal class

Fo= Frequency of class before modal class

F2 = Frequency of class after modal class

*************************************************

9) In the given figure, TA and TB are tangents to the circle with center "O" . If ∠ATB = 80 deg, then find the measure of ∠ABT


sol) Given :- TA and TB are tangents

We Know tangents drawn to the circle from same point is always equal

so, tangent (1) TA TB Tangent(2)

Given :- ∠ATB = 80  -------(1)

we can see from the figure in triangle TAB

we know, sum of angles in a triangle = 180

∠ATB + ∠TBA +∠BAT = 180

from (1) , ∠ATB = 80

80  + ∠TBA +∠BAT = 180

Since TA = TB opposite angles of equal sides are equal

80 + 2ATB = 180

2ATB = 180 - 80

ATB = 100 / 2

ATB = 50 deg

***********************************************

10) A bag contains balls numbered 1-50, a ball is drawn at random from the bag, the probability that it bears a two digit numbered multiple of 7

sol) Two digit numbers that are between 1-50 but divisble by "7" are as follows:

14,  21,  28,  35,   42,  49 = total 6 

we have,

Probability =      number of events     
                        total possible outcomes

Total possible outcome = 50

No.of events = 6

.^.  probability =   simplify further=
                              50                              25


*****************************************************

11) From the top of the building the angle of elevation of the top of the cell tower is 60deg and the angle of depression to its foot is 45deg, if the distance of the building from the tower is 30 meters. draw the suitable diagram to the given data.

sol)



condition (1) :- From the top of building, the angle of elevation of the top of a cell tower is 60 deg = ∠AEB 

condition(2) :- The angle of depression to its foot is 
                         45 deg =∠ECB

condition(3) :- Distance of the building from the tower is
                          EB=DC = 30m

In ⧍AEB

Tan 𝜽 = opp
               adj

Tan 60 = AB
                EB

√3         = AB
                 30

30√3     = AB


(*) In ⧍ EDC

Tan 𝜽 = opp
               adj

Tan 45  = ED
                 DC

     1       = ED
                   30

    30       = ED

SO, ED = BC = 30 m

Height of the tower = AB + BC 

=> 30 √3  + 30 

=> (30 * 1.73)  + 30

=> (51.9) + 30

.^.  81.9m is the height of the tower

***************************************************

12) Find the value of 

      tan^2  60   +  cot^2  30
      sin^2  30    +  cos^2  60

sol(√3)^2    +  (√3)^2
         (1/2)^2  +  (1/2)^2

=>   3      +    3    
      (1/4)  +  (1/4)

=>       6          
        1  +  1
            4

=>        6   
          (2/4)

=>  6 * 4
         2

=> 24
       2

=> 12


*****************************************************

13). A right circular cylinder has radius 3.5 cm and height 14cm. Find curved surface area.

sol) We have :- C.S.A = 2𝛑 r h

=> 2 * (22/7) * (3.5) * (14)

=> 2 * 3.14 * 49

=> 153.86 * 2

.^. C.S.A = 307.72 cm^2

*************************************************

Section-3

sol) Steps to draw ⧍ PQR

1) Draw base QR of side 6 cm

        Q-------------6cm--------------R

2) Draw ∠Q = 70 deg

3) Taking "Q" as center, 4cm as radius, we draw an arc .
     let the point where arc intersects the ray be point "P"

4) Join PR


.^. ⧍PQR is the required triangle


Now, we need to make a triangle which is 3/4times its size

.^. scale factor = (3/4) < 1


(*) Steps of construction 

1) Draw any ray QX making an acute angle with QR on the side opposite to the vertex "P"




2) Mark 4( the greater of 3 and 4 in (3/4)) points

    Q1,Q2,Q3,Q4 on QX so that  QQ1=Q1Q2=Q2Q3=Q3Q4



3) Join Q4R  and draw a line through Q3( the 3rd point, 3 being smaller of 3 and 4 in 3/4) parallel to Q4R, to intersect QR at R'.


4) Draw a line through R' parallel to the line PR to intersect QP at P'




Thus, ⧍ P'QR' is the required triangle

***********************************************

14(b) Draw less than Ogive for the following frequency distribution. Find the median from obtained curve.




sol







Less than type Ogive





obtaining median weight from the graph:-

Since Σ = 2+5+12+31+39+10+4 = 103

So, n = 103

(n/2) = 103/2 = 51.5

we draw a line parallel to x-axis where number of students = 51.5

we can see from the ogive it intersecting x-axis at "100"

.^. Median = 51.5


Verifying using median formula



L = Lower limit of median class = 90

class interval(h) =  70-60= 10

cumulative frequency of the class before median class(cf) = 20

Frequency of median class(f) =  31


90 + (51.5-20/31) * 10

=100.16 verified/-

****************************************************

15 (a) Show that     cos𝜽      +    1 -sin𝜽     =2 sec𝜽
                               1-sin𝜽              cos𝜽

sol) cross multiply we get,

cos^2 𝜽   + (1-sin)^2  𝜽
     (1-sin𝜽)(cos𝜽)

***********************************
(1-sin)^2 is in (a-b)^2 form expand we get
************************************


cos^2 𝜽 + (1 + sin^2𝜽 -2*1*sin𝜽)
                 (1- sin𝜽) cos𝜽

**********************
WE KNOW,

sin^2 𝜽  + cos^2 𝜽   = 1

***********************

(Sin^2  𝜽 + cos^2 𝜽) + 1 - 2sin𝜽
               (1-sin𝜽) cos𝜽

1+ 1- 2sin𝜽) 
(1-sin𝜽) cos𝜽

2-2 sin𝜽
(1-sin𝜽) cos𝜽

taking"2" common from numerator

2(1-sin𝜽)
(1-sin𝜽) cos𝜽



  2   
cos𝜽

2 *   1   
     cos𝜽

From Trigonometry identities we know ( 1 /cos𝜽 = sec𝜽)

.^. 2 sec𝜽


************************************************** 

15(b) In a right angled triangle the hypotenuse is 10cm more than the shorter side. If third side is 6cm less than hypotenuse, find the sides of right angled triangle

sol) 

condition 1) :- Hyp is 10cm more than shorter side

Let "x" be the shorter side

.^. Hyp = 10+x


cond 2) :- 3rd side 6cm less than Hyp

Hyp - 6cm

10+x-6 = x + 4 cm



By using Pythagoras theorem



AC^2 = AB^2 + BC^2

( x+10)^2  = ( x)^2   + ( x+4)^2


**********************************
(x+10)^2 and (x+4)^2 is in (a+b)^2 form
***************************************************

x^2 + 100 +20x = x^2 + ( x^2 +16+8x)

100 + 20x = x^2 + 16 + 8x

84 + 20x = x^2 + 8x

x^2 - 12x - 84 = 0

we have

x = -b + √(b^2 - 4ac)
                2a

x = -(-12)  √(-12)^2  -  4 * 1 * (-84)
                          2 * 1

x = 12  +   √144 + 336
                           2

x = 12  +   √480
                     2


x = 12 + 21.90
            2


x = (12 + 21.90) 
             2  

=> (33.90)/2 =  16.95

       or

x = 12 - 21.90
           2

=> -4.95

As sides cannot b negative we take x= 19.95

now

Shorter side (x) = 16.95 cm

Third side (x + 4) =  20.95 cm

Hyp (x + 10) = 26.95 cm

***********************************************

16) Find the mean age of 100 residents of a colony from the following data


sol) Assumed Mean(A) = 35






𝝨 fi = 10 + 15 + 25 + 25+10+10+5 = 100

𝝨 fi*Ui = -30-30-25+0+10+20+15 = -40

Mean:-

Assumed meand(A) = 35

Class interval(h) = (20-10) = 10

𝚺fi = 100
  
𝚺fi * Ui = -40

X = a + h [ 𝞢 fi ui]
                     𝞢 fi

=> 35 + 10 [ -40  ]
                      100



=> 35 +(-4)

=35-4

=31  is the mean age of 100 residents

*********************************************

16(b) A toy is made with seven equal cubes of side √7 cm. six cubes are joined to six faces of a seventh cube find the total surface of the toy.

sol) Given :- No.of cube = 7

Side of the cube = s = √7  cm

Six cubes are joined to 6 faces of a 7th cube 

if one cube attached with other cube one of its face get hidden and only five faces of cube are exposed and only surface area of six cube is effective 

we have 

Surface area of one side cube = S^2 = (√7)^2 = 7 cm^2

.^. , surface area of five side of a  cube = 5 * 7 = 35 cm^2 

.^. surface area of six cube = 6 * 35 = 210 cm^2

 Total surface area of the toy = 210 cm^2

***************************************************


17(a) If two dice are thrown at the same time, find the probability of getting sum of the dots on top is prime.

sol) Prime Number:- which is divisible by 1 and itself

2,3,5,7,11,13, 15........

(1,1) ,( 1,2),(1,4), (1,6) = 4

(2,1),(2,3),(2,5)  =3

(3,2), (3,4) =2

(4,1), (4,3) =2

(5,2), (5,6) =2

(6,1),(6,5) =2
----------------------
Total 15 outcomes


.^. probability for getting sum as prime number

=> No.of favourable event
      Total No.of outcomes

=> 15
      36

=>  is the required probability
     12

***************************************************
17 (b) The angle of elevation of the top of a hill at the foot of a tower is 60 degree and the angle of elevation of the top of the tower from the foot of the hill is 30 deg. If the tower is 50m high, what is the height of the hill.

sol) 


(!) In ⧍ ABC 

AB = Tan 60
BC

50  1  
BC   √3

BC = 50 * √3   ---------------------(1)


(!!) In DBC

DC = Tan 30 deg
BC

DC    =  √3
50√3    -------------->(From (1))

 DC = 50√3 * √3

DC = 50 * 3 

DC = 150 m is the height of the hill

No comments:

Post a Comment