Thursday, May 7, 2020

Mathematics-2018-paper(1)

                                 Section-1

1) Find the distance between the points (1,5) and (5,8)

2) Expand Log10 385

3) Give  one example each for a finite set and infinite  set.

4) Find  sum and product of  roots of the quadratic equation
    x^2 - 4√3 x + 9 = 0

5) Is the sequence √3,√6,√9,√12.....form an Arithmetic Progression? Give reason.

6) If x = a and y = b is solution for the pair of equation x - y = 2 and x + y = 4, then find the values of a and

7) Find the relation between zeroes and coefficients of the Quadratic polynomial x^2 - 4  

******************************************************



                                Section-2 

8) Complete the following table for the following

y = p(x) = x^3 - 2x + 3



9) Show that Log 162 + 2 log 7 - log 1 = log 2
                              343              9         7



10) if the equation kx^2 - 2kx + 6 = 0 has equal roots, then find the value of k


11) Find the 7th term from the end of the Arithmetic Progression 7,10,13.....184.

12).In the diagram on a Lunar eclipse. If the position of The sun, Earth and moon are shown by (-4,6), (k,-2) and (5,-6) respectively, then find the value of k

13) Given the linear equation 3x + 4y = 11, write linear equation in two variables such that their geometrical representations form parallel lines and intersecting lines.

******************************************************


                             Section-3
  
14) Find the points of trisection of the line segment joining the points (-2,1) and (7,4)

                                             OR

Sum of squares of two consecutive even numbers is 580.Find the numbers by writing a suitable quadratic equation.


******************************************************




15). Prove that √3 + √5 is an irrational number

                                          OR

Show that cube of any positive integer will be in the form of 8m , or 8m+1  or 8m+3 or 8m + 5 or 8m+7, where 'm' is a whole number 

*****************************************

16). Find the solution of  x + 2y = 10 and 2x + 4y = 8 graphically. 

                                OR

A = { x:x is a perfect square, x < 50 , x N} 

B = { x:x= 8m + 1, where m ≡W, x<50,  x≡ N }

Find A∩B and display it with Venn diagram.


*******************************************************

17). Find the sum of all two digit positive integers which are divisible by 8 but not by 2.

                                               OR

Total Number of pencils required are given by 4x^4 + 2x^3 - 2x^2 + 62x - 66. If each box contains  x^2 + 2x - 3 pencils, then find the number of boxes to be purchased.

   

                                 

 

 

No comments:

Post a Comment